Extended bounds limiter for high-order finite-volume schemes on unstructured meshes
نویسندگان
چکیده
منابع مشابه
Optimising UCNS3D, a High-Order finite-Volume WENO Scheme Code for arbitrary unstructured Meshes
UCNS3D is a computational-fluid-dynamics (CFD) code for the simulation of viscous flows on arbitrary unstructured meshes. It employs very high-order numerical schemes which inherently are easier to scale than lower-order numerical schemes due to the higher ratio of computation versus communication. In this white paper, we report on optimisations of the UCNS3D code implemented in the course of t...
متن کاملMonotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes
We consider a nonlinear finite volume (FV) scheme for stationary diffusion equation. We prove that the scheme is monotone, i.e. it preserves positivity of analytical solutions on arbitrary triangular meshes for strongly anisotropic and heterogeneous full tensor coefficients. The scheme is extended to regular star-shaped polygonal meshes and isotropic heterogeneous coefficients.
متن کاملEntropy Conservative and Entropy Stable Finite Volume Schemes for Multi-dimensional Conservation Laws on Unstructured Meshes
متن کامل
Multi-dimensional Optimal Order Detection (MOOD) - A very high-order Finite Volume Scheme for conservation laws on unstructured meshes
TheMulti-dimensional Optimal Order Detection (MOOD) method is an original Very High-Order Finite Volume (FV) method for conservation laws on unstructured meshes. The method is based on an a posteriori degree reduction of local polynomial reconstructions on cells where prescribed stability conditions are not fulfilled. Numerical experiments on advection and Euler equations problems are drawn to ...
متن کاملA Posteriori Error Estimates for Higher Order Godunov Finite Volume Methods on Unstructured Meshes
A posteriori error estimates for high order Godunov finite volume methods are presented which exploit the two solution representations inherent in the method, viz. as piecewise constants u0 and cellwise p-th order reconstructed functions R 0 pu0. Using standard duality arguments, we construct exact error representation formulas for derived functionals that are tailored to the class of high orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2018
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2018.02.009